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Abstrzct

The present article represents the authors' contribution to the
URSI Information Theory monograph edited by J. Loeb, Vice Chaimman of
Commisgion 6., It discussés various topics in the theory of discrete information
channels, including the general binary channel, channels with fading, cascaded

channels, and channels with memory.
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l. Introduction

Many interesting aspects of informetion theory can be illustrated by
studying discrete channels with small input and output alphabets. In fact,
much importan£ work has been done 6n the simplest of all channels, the
(memoryless) binsry symmetric channel (BSC). We refer to Elias' study of
the way in which rate and probability of error in the BSC depend on the length
of the blocks in which the coding is done [1]. In the present article, we
Shall be concerned exclusively with asymptotic properties of channels, i.e.
propérties which are based on the assumption that coding is done in arbitrarily
long blocks. In this study, we shall sometimes consider ternary and higher
order channels as well as binary channels. In fact, the binary channel is
too simple to be representative of the general discrete channel, as can be
geen from the fact that neither input letter can be suppressed without

destroying its information rate*.

2. Information sources and information rate

The first concept of interest in information theory is that of an

informetion source, i.e. 2 device which generztes a random sequence of letters

from some alphabet; the random sequence then serves as the input to a channel
(see Section 3). Let the input alphabet consist of the m letters xp, ..., X .

We shall confine our attention to independent sources, for which the probability

Fa, 1 <i <m, that the input letter x5 is emitted at time t is statistically

independent of which letters were emitted at times prior to t and of which

*Eveﬁnin the most asymmetric binary channel one does not have to use an input
symbol more often than 63 per cent (or less often than 37 per cent) of the time
to achieve capacity (see Section 5).
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letters will be emitted at timeé subsequent to t.  Thus, the probability of
& sequence in which X, appears l\Ii times, 1 < i <m, is just

i

N N N
Lep ) 2
() “(By) € wau(R) ™ .

According to Shannon [2], it is particularly meaningful and fruitful in
studying information sources to introduce the concept of the entropy or
information associated with a source; for a source S of the type under

congideration, this quantity is defined by

m

(1) H(S) = -E Pi log B,

The base to which the logarithm is taken is conventionally chosen to be 2,

in which case (1) is said to give the mumber of bits of infommation per source
letter (see remarké at the end of this section); whenever we write log we shall
mean logz. Henceforth, it will be assumed that the source emits one letter
per second {and that the channel accepts one letter per second), With this
convention, (1) gives either the entropy of the source in bits/symbol or the

information rate of the source in bits/second., This convention allows us to use

the terms entrovy (or information) and rate interchsngeably; the adjustment

needed in case the source emits one letter every T seconds is obvious.

We shall not linger on the derivation of (1) from a set of properties
which it seems reasonable to expect information to have. Such derivations are
given in detail by Shamnon [2], Khinchin [3] and Faddeyev [L]. An#gportant

property of H(S) is that it vanishes if the source cen emit only one of the
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letters X,, o.op X, and tekes its maximum value (log m) when the source emits
all of the letters Xys sees X with equal probability. (This is in accord

with intuitive idess of information.) Another important property of H(S)

is the fact that although S can emit mN possible sequences of length N, one of a
much smaller set of ZNH(S) sequences is very likely to occur if N is very

large. (An exceptional case occurs if all m source letiers are egually likely;

then H(S) = logm and 2NH(S)

= mN.) This so-called asymptohic equipaitition
property is fundamental in informstion theory and can be demonstreted for

much more general sources than those studied here (in fact for any steztionary
ergodic source; see McMillan [5], Khinchin [3]). Finally, we remark that the
first of Shannon's two coding theorems (the so-called noiseless coding theorem)
consists in showing that precisely H(S) binary digits (bits) per symbol are
needed to noiselessly encode the output of S into binery digits; in general

B it tekes code blocks of infinite length to effect this encoding. The noiseless
coding theorem gives theoretical Justification for measuring H(S) in bits/symbol

(or bits/second).

3. Chsnnels and mutual information rate

A discrete m xn memoryless (informztion) channel is a probabilistic
device which accepts any of m possible input (or " transmitted") letters
Xys eeey X and emits any of n possible outovut (or ' received" ) letters

Vys eees Ypo in #ccordance with the following rules:

1) For every input letter x; and output letter ¥y there is &

definite number 1 0< p; 3 < 1, which represents the probability that if x

3 1

is transmitted, yj is received,
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2) Fvery input“‘ letter gives rise to at least one output letter,
iced

n

§j:=; Py 4 =1,

3) The response of the device to any input letter X, is
" statistically independent of its response to any past or future letter. In
Section 8 we shall sbolish this requirement and consider a gpec¢ial kind of

discrete channel with memory.

L convenient representstion of such a discrete channel is as an mxn

channel matrix C, i.e. as the mxn rectangular array of mumbers

p]l p12 ees pln

(2) Poy Ppy ¢ee Ppp

Q
]

LN

Pml Pm2 *** Pon

(We shall uge C to denote either a channel or the associated matrix.) By
1) and 2) each pij lies between O and 1, and the sum of every row of the matrix

(2) is unity; these properties are summarized by calling C a stochastic matrix.

The study of stochastic matrices has received a great deal of attention in the
mathematicel literature, especially in connection with the theory of Markov
chains (see Feller [6]). We note thast the case of 2 noiseless channel corresponds
to the case where each row contains one 1 and(m - 1)O's, while each column

contains one 1 and n - 1) O's,

Suppose now that the input letter Xys 1<i<m is used with probability
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Py and define p(1,3), the joint probability that x, is emitted and yj is

received, by the relation

Then the probebility that yj, 1 <j<n, is received, regardless of which X3

is transmitted, is given by

1 m,
P =§_; p(1,3) .

It is convenient to represent both the mumbers F:s 1 <i<m, and the numbers

P ! - -—>

P;y 1 < J<n, as the components of corresponding columh vectors P and .P', i.e,
b 'j - -

L

P B

- -y ]
P = || P p' = || P2
)

P P!

We now give a fundamental definition introduced by Shannon [2]: The

average mutual information rate (or simply the rate) of the chamel e when

it is driven by 2 random sequence of input letters chosen independently* '
-
with probabilities given by the vector P (equivalently, 'when it is driven by

*It can be shown that for a memoryless channel any dependence be'bweén input
letters diminishes the rate of the channel (see Feinstein [7]).
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—>
an independent sovrce characterized by P ) is

- m n
(3) R(P ) = ; % p(i,3) log RLtad)
1=] ‘s Pj_ Pj
bits/second. (Recall that by our convention one input letter per second is
emitted by the source and accepted by the channel,)

To justify (3), we speéialize to the case where the input and output
alphabets are the same (o that in particular m = n) and use Shamon's

correction channel argument [2], which asserts that
(L) correction rate” + mutual information rate = source rate .
The source rate is of course just

m

- B, IOgP .
g i i

The correction rate is derived as follows: Whenever the letter y 3 is received,
it may be correct or incorrect. Since the probability that y3 originated from
x; is pj(i) = p(1,3)/P}, 1 < 1,j < m, whenever ¥y is received we must supply

an amount of entropy

mn

to correct it or to leave 1t stand uncorrected with the assurance that it is

*Mbre precisely, the average rate of correction entropy,




correct. Since the letter yj is received with probabilit&lfg, the average

rate at which correction entropy must be supplied is

m o m m n ..
-3 P 3p mW) ey = -3 e logﬁ’-%f-ﬁ'

Since

we can also write the source rate as

&y g—; Fy pyy loe Pi’”é i; p(1,5) log B .

Finally, using (L), we obtain

-t
mutual informetion rate = R(P ) =

o mn _ m n (. )
"3y 3y PPl B g B p)) 1og2P—Zﬂ—

e

?‘I- p(4,3) log B(—lﬂ)
J

which sgrees with (3) for the case m = n.

. In what follows we shall find it convenlent to introduce the symbol
<: :> (angular brackets) to denote averaging with respect to the joint
probability distribution p(i,3), i.e., if £(i,3) is a function of the two




integral arguments i and j, where 1 <i <m, 1 £ J <n, then

, m n O
(1,902 = pli,d) £(1,3) .
& Fr T
With this notation (3) becomes

R(-I;B = -log P1)> + <log pj(i)> = log '%(é?iﬁ>-
. ; Pl

As an example of (3), consider the general binary ¢hannel

a 1~a
0<e, =1 ,

(5) C(G,B) = B 1-8 ’ =

féd by a source producing O's and 1's independently, with probabilities Po and
P, = 1 - P, respectively. (Eq. (5) means that transmitted O's are received as
O's with probability a, while transmitted 1's are received as O's with probability

B.) Then it is easily verified that the rate associated with (5) and the input

vector
- P
P = °
Py
is

(6) R(a,B3F ) maPlog (a/El) + (1 )R1og( (1-a)/Py) + BP Tog(p/P;) + (1-B) R, log((1-8)/P} ),

where P, = aP, + B(1 = P_) is the probebility of a received zero and P} = 1 - P

is the probability of a received 1.




4. Channel capacity

Following Shannon [2], we define the capacity c¢(C) of the (discrete
memoryless) channel C as the larges*t value of the rate which is achieved when

the input probabilities are varied over all possible values, i.=,

Max -
(7 e(C) = ;? R(P) .

As an example consider the BSC where the chanrel matrix

a §

Coym =||p <«

is obtained by setting B =1 - a in (5). In this case it is clear from
syrmetry (end it can be verified by direct cazlculation) that capscity is
achieved for the choige P = Py = 1/2, which implies P = ri = 1/2 as well.
‘Substituting these values in (6) and using 8 = 1 - a, we find

c(Csym)=1+aloga + B logp

for the capacity of the BSC.

The fundamental importance of the chennel capacity as an information=-
theoretic quantity stems from the role that it plays in Shamnon's second
coding theorem (+he so-called noisy coding theorem), which it is safe to say
contains most of the substanti%re content and technical promise of information
theory (taken together with corresronding studies of finite-length block coding
1like [‘L] )e This theorem asserts that with proper éncoding it is possible to

transmit information at any rate less than capacity with arbitrarily small




- 10 =

rrobability of error, provided that the block length of the code is long enough,
and furthermore that regardless of the encoding scheme, errors will always be made
if one attempts to transmit information at a rate greater than capacity. Much
space has been devoted in the literature tc a rigorous demonstration of this
theorem for an appropriately large clags of sources and channels, and the whole
subject is a2 difficult one which we shall not go into here. The interested
reader is referred to the papers of Khinchin [3] and the book by Feinstein [7];
the latter author played an important role in developing a rigorous proof of

the noisy coding theorem.

We turn now to the question of how the mathematical operation symholized
by (7) is to be carried out in general., This operation involves more than a
simple maximization problem, since the vector —I;> in question is subject to the
constraint that it ve a vector with non-negetive camponents which add up to

unity. We begin by writing (3) in a form which explicitly exhibits its

dependence on the input probabilities Pi; this fom is

->> m n mn m n
(8) R(P) = - < log p;>+ <1ogpy > - g %_:;Pipijloggl’ipij * E };;Pipijlog Pyge

. .
To incorporate the constreint

m
we add n
*For the time being we neglect the additional constraint that Pi >0,1<i<m
which will be discussed below in comnection with Muroga's work,
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to (8), where X\ is an undétermined Lagrange multiplier. Differentiating the
s of these two temms with respect to Pi’ 1<1i<m, and equating the result

to zero, we obtain

n .
(9) ; r&d log et = "

where u = X - (1/log e) is a new constant. Multiplying (9) by P, and summing

over i, we find that
u=c,

where ¢ is the cepacity of the channel C.

Suppose now that the channel C under consideration, with channel matrix
(2), is square (m = n) and that det(C), the detemminant of (2), is non-vanishing.

Then the inverse matrix C—l, satisfying the matrix equation

(10) T =C"0 =1

(where I demotes the unit matrix) exists. If we denote the elements of Cm1

by p;?}' ,1<4, 3<m, then (10) reads

1 RN |
%piipﬂk"%;fpia P = O » I BEZM

where 5ik is the Kronacker delta symbol, equal to 1 when i = k and O when

i #k. Multiplying (9) by p;i and summing over i, we obtain

mn m -1 m m -1
;;p‘dpij log pij'loggpipﬂc’ugpki) lfkfm .
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Hence

n m.. m m ‘
g.:_I Pip:lk - exp{-cgp;i + E};{ p;:%pij log pij} s l<k<m,

where by exp(x) we mean 2%, the base appropriate to our choice of units.

Multiplying by p;g' and summing over k, we obtain

2. .1 2o, i A - ,
(11) Pi-‘gpki eﬂ{'g-pki*ggpldpij 1ogpij}, 1<i<m,

Finally, following Muroga [8], we note that

(12) ép;;-};p;épﬁnééﬁ-l ’

80 that (11) can be simplified to

(13) P -éﬁem{-c*ié%lpid log pi;j}’ l<i<m.

Thus, the channel capacity is the mumber ¢ which when substituted in (13)

gives Pi >0 and

m
E;Pi'l'
1=

Then with this value of ¢, (13) gives the corresponding rate-maximizing

velues of the input probabilities P:l.’ l1<i<m. Explicitly, we form the.

sum

' n
=X

and use the relation (12) again, obtaining
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o)
"
il
™
8
t
o)
+
uI'IB
n| IS
:’G"U!
P'.U
P-
[N
e
o]
oR
. P’p
[ N
—
i

Solving for c, we get

(1!4) ¢ = log g'; exp {ﬁ m, p;ip . log p. } ’
=, e J= 1 lj ‘

whore it will be recalled that both log and exp are taken to the base 2.

Computations are simplified by defining (after Murcga [8}) the auxiliary
vector

—>

BN se e [\)Nl-?q

which satisfies the matrix equation

(15) cfa-?

—->
whare H 1is the row-entropy vector of the channel T, i.e., the vector

m
(16) =2, Py3log pys

-

m
Ho=- ; Pps 108 Pps

oo 00

m
- E Pp3 108 Dy




-1l -

, | g 17>
It follows from (15) and (16) that X = <C*~ H , i.e. that

moqn
x‘lagpijgpjk logpjk, l<iz<n ,

-y
80 that in tems of the components of X , (1L) becomes simply

. ' m '
(17) ¢ = log exp X, .
1=

Moreover (13) becomes

m
. -1 .
P, = exp(~c) Esl Beg P X, 5 1<is<m.,
Since

p;i = cof(p,, )/det(C)

where cof(pik) is the cofactor of the element P+ We finally have

p,llcnooooo-.a plm

(18) P, = exp(-c) det exp(Xl) coos exp(Xm)

®escosoveee K

p]nl'..'..‘... pmrn

where the matrix in (18) differs from the channel matrix C by having the

entries exp(xl), cers exp(Xm) instead Of Pyq; ++s, Py in the i'th row.

The method Just described requires modification if it leads to negative

input probabilities, and more generally if det(C) = O or the sizes of the input
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and output alphabets are different., Details of how to deal with these various
cases are given in Muroga's peper [8] s to which the interested reader is
referred, There is also available a different and more easily visualized

approach to the general problem of capacity dve to Shannon [9]

We conclude our present discussion by discussing a one-perameter
family of ternsry channels which for suitable values of the psrameter
leads to a negative probability for one of the input symbols, which must

therefore then be suppressed according to Muroga. Consider the channel

a l-ax 0
1 1
¢ 2 0 3 ’
0 l-a a |
|

where O <a< l, The inverse matrix is

1 1 . 1

2a “%a

c-1 - 1 a 1
(1) G-I 2(1-a)

1 1
"% L %

The row-entropy vector ig

H
= 1
H|

-
H
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and the vector X 1is

> =1

- Heat

X = -I—.— N
-l

where

H= = loga = (1=a) log (1 ~a) .

Using (17) and (18) we find that the symbol corresponding to the middle row of

C should be used with the probability
of H-a
g e <- 1:2)

B

if capacity is to be achieved. -This symbol should be suppressed when the

numerator goes negative, This happens whena > a o) where a o is the solution

of
H(-c.o) - 100 a
—_— = Tea — s
l-a %
0
or i\
(19) loga, ==a, .

The solution of the transcendental equation (19) is g~ 0.641, When p >0,

the capacity of the channel is

log {1 + exp (— g—:%)} bits/second ,
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wheress when p < O, the channel matrix reduces to

~

¢ l-a O

0 l-o0 @

This is the matrix of the binary erasure channel (BEC), i.e., the channel in
which O's and 1's are transmitted and O's, 1's and x's are received; a is the
probability that a 0 or 1 is received correctly and l-a the probability that

a Oorl is received as an x. S8ince received O's and 1's are always correct,
whereas a received x is always wrong and equally likely to have come from a

0 or a 1, the capacity of the BEC is obviously & bits/second. It is interesting
to note that the capacity of C is 1 bit/second both whena = 0 and @ = 1, but
vwhen a = O the symbol corresponding to the middle row should be sent, whereas

when ¢ = 1 it should be suppressed.

5. The general binary chammel

Using Muroga's method, Silverman [10] has made a detailed study of the
general binary chamnel G(a,B) defined by (5)%., We sketch without proof some
of the resuits obtained in his paper:

1) The capacity c(a,B) of the general binary channel is given by the

formula

-BH(a) + aH(B) H(a) - H(B)
c(a,p) = +log | 1+ exp

Bp~-a g~a

The function c(a,B8) has the symmetries

cla,p) = c(By,a) »c(l =~a, 1) =¢(21 -B, 1 -a),

*Ioeb [11] has also studied some aspects of the general binary channel,
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and defines a surface over the unit squére 0<a, B <1, Lines of constant

c(ayB) are shown in Fig, 1
2) Capacity is achieved if O's are transmitted with probability

. H(B) - H(a)) | =L
Po(a,p) = B(B-d)"l - (9-a)‘."1 1+ gxp< : a> .
-0

P (a,8) satisfies the relation
N 1
0.37~2 < Pylesp) =1 - £ ~0.63 ,

which explaina the footnote in Section 1., The funection Po(a s8) is discontimious

at the points ¢ = 8 = 0 and @ =B = 1; it has the symetries

Po(a,a) - Po(l-a, 1-8) = 1 - PO(B,a) =1 - Py(1-8, 1a) ,

Lines of constant P_(a,B) are shown in Fig, 2.

3) At capacity, O's are received with probability

H(B) - H(a)\ |~*

P;(a,ﬁ) =11 + exp ,
B-a

The function P;(a,ﬁ) has the symetries

P (a,8) = Pi(B,a) = 1 - P (11, 1B) = 1 - P (18, 1-a) .

Lines of constant P (s,8) are shown in Fig. 3.

The reader interested in other properties of the general binary channel,
8.8+, the form of the channels giving the maximally asymmetric input probability
distributions (PON 1/e or P,~1 = 1/e), the probability of error for the
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 general binary channel, etc., is referred to Silverman's paper ,,.[10‘].

6. Channels with fading

The communication situation dealt with so far can be indicated schema-

tically by the diagram
T->C->R ,

i.e., information is sent from a transmitter T to a receiver R through a channei
C, characterized by a stochastic matrix (see Section 3). (We make no distinction
between the primary information source S of Section 2 and the transmitter T,
although in general there is the problem of (moiselessly) encoding the output

of S 80 as to match the input of T.) We now consider the following generali-
zation of this gituation: Instead of one (memoryless) channel C, let there be

a family of (memoryless) channels Ca, where the index o ranges from 1 to s,

and let the channel which is actually present at a given time of transmission
depend on the state of a random device N (N for '* nature%), Schematically, we
have .

i.e., information is sent from the transmitter T to the receiver R through the
channel C, the state of which depends on the state of nature N, We assume
that the state a, 1 <a < s , chosen by nature is statistically independent
of past and future states of N and of the transmitted sequences as wellj let
P, be the probability that nature chooses the state a. The channel C is now

represented by the family of stochastic matrices

K



Since the transition probabilities Py ;j(“) are now random variables, a new
element of randomness has entered into the problem.
used to give an abstract representation of communication in the presence of
" fading' , and with this in mind we refer to the totality of channels C‘;t s

1l <a <8, a5 a channel with fading.

A natural problem in the theory of channels with fading is that of
finding the channel capacity for various conditions of knowledge of N at

the transmitter and receiver. There are fm:r.possible cases, which can be

|Ryq (@)

Py (@)

4 pml(—a)

-23 -

plz(a) eeee Pln(a) ‘

p22(a) cece pzn(a)

®ovscocavsobod’

sz(a) eoee pm(a)

schematically represented as follows:

Case 1.

Case 2,

Case 3,

Cass ho

N

|

T —C -=R

!
l 4

-3
IN
Qe— ¢ Qe— 2 Qe 2
(4
-+

LN
!

Such a model might be
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Case 1, which we have glready encountered, represents the situation in which
neither the transmitter nor the receiver knows nature's state, so that N is-
effectively just more noise in addition to that slready included in C. Case

2 is the situation in which the receiver but not the transmitter knows nature's
state, Case 3 is the situation in which both the trangmitter and the receiver
know nature's state, and Case ) is the situation in which the transmitter but
not the receiver knows nature's state. We now give expressions for the

capacity in all four cases.
Let pla,i,3) be the joint probability that nature chooses the state a,- that

Xy is transmitted and that -73 is received. In cases 1 and 2, where the

trangmitter is ignorant of nature's state, we have
(20) pla,i,9) = pRypy 4(e) o

In case 3, where the transmitter's action can depend on nature's state, we have
(a-) p(a,i,;j) " papi,apij(a) ’

where Pi a is the probability of choosing Xy given that nature's gtate is a.
9

(Case L requires special treatment; see below.) Generalizing the angular

bracket notation of Section 3, we write

< £(a sy 3V >m g g"; % pasiyd) £asisd) o

We now derive expressions for the chammel capacity in the four different cases.

Case 1. Since neither the transmitter rbr the receiver knows nature's.
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state, the channel has the same capacity as the average channel

T = ; P,C,

with transition probabilities

for the capacity in this case.

Case 2. Since now the receiver can use its knowledge of the pair

(a,yj) to infer x,, we have, from (3)

i
Max pla,i, )

(22 - lo

(22) | o = = s oD >

for the capacity in this case, where p(a,j) is the probability of the pair

(a,yj), 1.0,

n
ple,J) = ; pla,i,j)

Using (20) we can rewrite (22) as




(23) - c, = —> log > - .

- -
Let Ra(P) be the rate in the charmel C, when using the input vector P ., Then

(23) is just
Max 8 ->
(24) c, = —p—» E PR (P)

In other words, the capacity in case 2 is the maximum average rate when
—
driving all the channels Ca with the game input probability vector P. Clearly,

c, > s gince we are now usihg more detailed knowledge of the channsel,

Case 3. Now the transmitter can base its choice of input probabilities

on nature's state, choosing a suitable input vector )

S

Pl,“
-t P
P = ".”“

Pm N}

for each state, 1 <a < s. Moreover, as in case 2, the receiver has the pair

(a,y J) available to infer x,. Therefore we have

Max p(a,i, )
(25) o= — < og - >
. PG Pi,ap(a’:’)
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for the capacity in this case, where the maximization is over all Fy s

l1<a <8, Using (21), we can rewrite (25) as
Max.

8 "‘>)
c, = —> P, R(P .
3 g ¢ ¢

In other words, the capacity in case 3 is the maximum average rate when
-l
driving each channel C, with its own input probability vector P, . It follows

at once that

)
(26) 03 - a; Pac(’ca) ’

i.e., the capacity is Just the average capacity of the channels C_,

f
\
i

1<a <s. Clearly ¢y 2 ¢, , since now the transmitter as well s5 the

receiver is using the extra information about the channel.

Case L is more complicated, In this case Shanron [12] has shown that
the capacity of the channel with fading is the sam® as the capacity of a new
m’ x n (non?fadin‘g) channel ¢' , with input letters consisting of the m®
s-tuples (xil, xj.?, voey xi’), 1: 11, 12’ eeey i’ 5 m and Outpu‘b.letters
consisting of the n letters Ty 1 < j < n, where the transition probabilities

for C' are defined by
8
pil’te’ seey 1. 3 3= E papicd(a) *

Thus the capacity in this case is

¢, = e(c") ’
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and clearly & < ch <ec We now give two examples which illustrate the

3 L ]
various cases.
Examples 1. Supposée nature has two states 1 and 2 with probabilities

a and B, respectively,, and suppose

10
0 1

o 1
11 09|

Cla

’ ca. -

Then the average channel T is the BSC, i.e.

« B

C =aC +8C, =
1 2 B a

so that ¢, = 1L +a loga + B log B bits/second (see Section L), If nature's

1
state is known by the receiver or by both the transmitter and the receiver,
then the capacity of the fading channel is obviously 1 bit/second, achieved

by transmitting O's and 1's with equal probability and interch.;nging O's and
1's at the receiver when the channel is in state 2. ¥gs. (24) and (25) confirm
that c, = c3 = 1, When only the transmitter knows nature's state, the

capacity is again 1 bit/second, achieved by transmitting O's and 1's with

equal probability and interchanging O's and 1's at the transmitter when the

channel is in state 2. In this instance (case lj) Shamon's construction asserts

that éh = ¢(C'), where

c' =

WOR
/- Q™
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7 , - - ->
Denoting the rows of this matrix by the vectors Ayy ..o, 4) (eegs Ay = (a,8) ),
we have

iy -> i

Al - a.A2 + SAB

> g L d
Ah - BA2 + QAB .

It follows by an argument due to Shannon [9] that the symbols corresponding
to the first and fourth rows of c' have to be suppressed if capacity is to be
achieved. Dropping the first and fourth rows of C', we get the matrix C, ,
so that c) * c(cl) = 1 bit/second, as required.

Example 2, let there be three states with equal probability, and let

10 i1 11

C. = e =22 c = {2 2

1 1 1) °? 2" {1 1 ’ 3 o1 .
2 2 2% _

Then if neither the transmitter nor the receiver knows mature's state, the

capacity of the fading channel is that of the average channel

ol
"

Wik WIn
win W

iee. ¢y = c(®) =1+ (1/3) log (1/3) + (2/3) log (2/3) = (5/3) - log 3 ~.082
bits/second. If only the receiver knows nature's state, then by (2k)

Wik

c. = —>
R

o d -2 -»
[Ry(B) + Ry(P) + Ry(P)] .
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By symmetry, the meximum is achieved for

-

T

and an elementary. calculation shows-that ¢y = 1 - (1/2)‘ log 3 ~ ,208
bits/second > €y o If both the transmitter and the receiver know nature's
state, then by (26) -
2

= 3 .c(Cl) ’
gince c(cl) - c(CB) and c(C2) =0, Applying Muroga's method (see Section L),
we easily find that c(Cl) = log 5 ~2, %0 that cy = -§- log 5 -% ~ 215
bits/second > c, *,
If the transmitter but not the receiver knows mature's state, then

according to Shannon's construction, ¢, = e(c'), where

(]
»
Wik NI W - o= Wl rol= Wit
WINY ol Wi ne rob i~ NI~ AWl i rod I o 1

*Driving binary channel with a source emittiné O's and 1's with edual
probabll'i%r leads to a rate very near capacity, which explains why c
80 near c, (see footnote to Section 1).
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By a simbie extension of the argument given in comection with the preceding

exsmple, we have
o, = ¢(C') = o(T) = ¢, ~ ,082 bits/secord ,

80 .that in this case, unlike example 1, the transmitter cammot use its

knowledge of nature's state to increase the channel capacity.

7. Cascaded channels

Let C be an £ x m channel matrix with output alphsbet Yys eees ¥, 5 and
let ¢' be an m x n channel matrix with input alphsbet Fyr oo Yy (1.0
identical to the cutput alphabet of C’). Then we agree to apply ¥y to the
input of C' whenever A is received at the output of C; this mode of chamnel
combination is called cascadilp‘g. Denote by Py 3 and p; 3 the elements of the
matrices C and C', and denote by p;j the elements of the matrix C" obtained

by cascading C and C', as just described. Then, since obviously

" n .
Py " E PiyPyy

" <cc'. Since

C" is obtained from C and C' by matrix sultiplication, i.e. C
matrix multiplication is in general non-commutative, the same is true of

channel cascading.

. e l-a
The problem of cascading identical binary channels C(a,g) = B 1- 1is
especially simple, in view of the identity
a{0) 3 4(n) 1 B 1 a-l 1l

(27) c™a,p) = B(n) 1.p(n)' - g 1-af| - (a-p)® B -B ’

L=a+f |




which is easily derived from a general fomula of matrix algebra (see e.g. [13]).

(We exclude the trivial cases a=l, P=0 and as0, =1, corresponding to the
‘10 01
01 10
be derived from (27):

noiseless channels and «) A mumber of sﬁuple"consequences can

1) Since |a -~ p| <1, we have

1 B lea a(°°) l-a(°°)

vy 1im  .n (),
(28) C(a,p) =C (c,B) =
n—>cw l-q+p
The limiting charnel G(m) (a,p) obviously has zero capacity, in accord with
the intuitive idea that an infinite cascade of noisy channels must destroy

any information fed into it,

2) Since ¢
H(®) @) go)

1l ) .a(‘n)- ol ® il a=-1 ’

a1l the channels C™(c,8) lie on a straight line in the (a »8) square passing
through the point corresponding to the limiting channel c(”)(a,a) and the
point (0,1). Thus, referring to Fig. 1, we have the following simple .interpre-
tation of the operation of cascading a binary channel with itself: Uéing (28),
draw the straight line just described; then as n increases, c™e,B) approaches
c(®) (a,B) along this straight line, moving alternately from one side of the
zero-capacity line-a = B to the other ifa - B <0 , |

The -operation of channel cascading, or equivalently of multiplying
channel matrices, is a partial ordering in the following sense: Given any two
channels C, and C,, then C is said to include Cp, written Gy 2 C, , if there

1




[
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oxists a channel C such that clc = 02 s 1.0, if 82 can be obtained from
Cl by cascading. Channel inclusion has the defining préper‘tios of a partial

ordering, namely

1) c>C, for any C ;

2)¢y =26y, C,2C, implies C;=Cy .

On the other hand, given arbitrary channels Cl and 0-2 s neither of the

‘ #
relations C. 2 02 ’ 02 > cl may hold, i.e. Cl and 02 may not be comparsble ,

1
In the case of binary channels, the structure of the partial ordering

is very simply displayed. Suppose we have two binary channels

a l-a

C=llp e O

' 1-p'

=

and assume, as we can without loss of generality, that B <a, B' < a'. Then,
following a procedure suggested by Birmbaum (private communication), we first

prove the following lemma:

A necessary and sufficient condition for € 2 ¢' 1s that the interval
()sL,) contain the interval (x‘i, 1,), where

Lo=pfe, Iy =p'/a, I = (1)/(1e) , I = (1-8")/(1") .

(Notethatinourcase0<L1<1<L2<oo, 0<Ij'_§15L.'zfoo.)

To show the necessity, we suppose that

x l=x

c LI v l-y

If ¢(C) denotes the capacity of C, then e(C) > e(c' ) is a necessary but not i
sufficient condition for C > c'. '
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is the chamnel such that CC" = C'. Then, doing the matrix multiplication
explicitly, we find that

Ii-ac/a'.wzp/anli ’

ax+ (1-a)y

since y > 0, and

Iy = (1-8')/(1=') = Lopx- QDY o (2.8)/(1) = L, s
1l-ax=(lea)y )

since x <1,

To show the sufficiency, we solve formally for the parameters x,‘y of
c", finding

~

o -
Since a'- B' >0, 0= >0, and ap'-a'p > 0 by the hypothesis that I, <L, ,
we see that 0 <y < x. Moreover y <x <1, sinceap’' - a'p +a'-p <a -p

is an easy consequence of the hypothesis Lé < L2. This completes the proof

that C 2C' and (L),L,) 2 (L],L)) are equivalent statements.

Using the lemma, we can give a simple geometrical model of the partial
ordering of binary channels under cascading. FPlot the point (a,p) corresponding

to C in the unit square, and draw the straight lines from the point (a,B)
to the points (0,0) and (1,1), as shown in Fig. L. Then 211 the points in

the region shaded with vertical lines represent channels contained in C,
i.e. channels which can be obtained from C b}" cascading. This follows by

applying the lemma in the part of the region lying below the line a=B, and

‘then noting that multiplication by lo 1 changes a channel into its reflection

10
in the line a=B, Moreover, it follows from this construction that all points

i
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in the region shaded by horizontal lines represent channels containing C.
Similarly, poirits lying outside of the shaded regions'represent channels
which are not ccmperable with C, i.e. which cannot be reached from C either

by premultiplication or postmultiplication by any binary channel.

e e
e —————
——————————
——————
————
et ve———

:7/:—:‘ e

L4
&
j, 1

Fig. 4 = Illustr: iing the partial ordering of binary channels.

|
\-
\—
|
-

For further discussion of topics related to channel cascading, see

Shannon [1l], Birmbaum [15] and Silverman [10]. ‘

8. Chamels with memory

We now consider a simple idezlized communication system suggested by
Chang [16], which leads naturally to the study of channels with memory.
Let the channel input be a saurce emitting binary digits, and let the channel
be such that O's and 1's emitted at the time t = O are represented by the

waveforms

£,(t) = Aexp (-t/0) ,

fl'(t) = -A exp (~t/v ),
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respectively, in the absence of mise*. The effect of noise will be rebre-
senﬁed by the addition of white Gaussian noise™ of r.m.s. voltage o .

Suppose, to consider the gimplest non-trivial case, that the source produces
the ciigits in isolated doublets, i.e., let a pair of binary digits separated

by an amount ¥ <% be transmitted, and then let there be a pause in
trangmission long enough to allow substantially complete decay of the
exponential exp(~t/v). Finally, suppose that we use synchronous, threshold
cietecti.on at the receiver, i.e., at thLz times to and to + v corresponding to
transmission of a doublet, we interpret a positive voltage as a O and a

negative voltage ag a l.

We now proceed to find the capacity of this simple channel. At a time
t o such that the channel has recovered from the effects of previous transmitted
signals the channel is described by the matrix
¢ l-a -

B 1P

Cs=

vwhere.
a = Prob [fo(0)+£>0] ,

g = Prob [1’1(0) +E£>0] ,

and £ is a Gaugsian random variable with mean O and variance 0’2. (Specifically,

*We have in mind, for example, a situation where O's and 1's are encoded into
sharp positive and negative pulses of amplitude A and then sent through a
channel whose transmission characteristics resemble those ofan RC filter
with time congstant v .

**By " white' noise, we mean moise with a constant power spectral density, or
equivalently with a correlation function which is a delta function., Gaussian
white noise has no memory. This is, of course, a limiting case, approached
only when the noise band width is much greater than that of the signals.
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a is the probability that a O transmitted at time to is interpreted as a 0,
and B is the probability that a 1 transmitted at time t, is interpreted as a O.
Similarly, L B o and al, ﬂl are the corresponding Aprobabilities at time

to + 9, un.dox' the hypothesis that a O or a 1 was transmitted at time ,to’

respectively (see below) ). Clearly we have

6 e Prob {¥ > =A) =1 « F(=A) ,
B = Prob (§ >4A) =1 - F(4),

where

is the distribution function of the random varigble E, It follows from the
‘symetry of F(x) that ¢ + 8 = 1, i,e. that C is a symmetric channel., At the
time to + v , there are two possibilities. If a O wa.s transmitted at time ’
to’ then the channel is described by the matrix

“o l-ao

p0 l'po
vhere
@ = Prob [ro(o) +2(r)+& >0] =1~ F[-A(2¢p)] ,

B, = Prob [2,(0) + £,(y) + &>0] =1 - F[-AQ2-p)] ,

and p = exp(«¢/t). Clearly we have @, + B, >1 and O, is asymsetric,
Similarly, if a 1 was transmitted at tys then at time ¢, + v the channel is
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described by the matrix

al l-ﬂl
Cl - ’
118y 18,

where
a;l = Prob [fl(_O) + fo(T) +E> 0] =1- F[A(l'P)] ’

By = Prob [£,(0) + £,(y) + £ >0] =1 - F[A(2+p)] .

This time a, + ﬁl <1 and sagain cl is asymmetric.

To find the capacity of the channel with memory, it is sgimplest to
procesd on a doublet basis and enlarge the channel to a new l x 4 memoryless
channel C" , with inputs and outputs consisting of the four pairs 00, 01, 10
and 11, Thus, we consider the 4 x ki channel matrix

aC, (l-a)Co

| BC, (1-p)Cy

whose elements are themselves 2 x< 2 matrices. Following Chang [16], we
find the capacity of ¢’ by using Muroga's method (see Section 4). The

»
rou-entropy vector H' of C' is easily seen to be

H(a) + H(a.o)
g H(a) + H(8,) o>
H(B) + H(a,) Be)® + 5| ’
H(B) + H(g,))

- -
He) T + H,
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1
1l
row-antropy vectors of the channels Co’ Cl, respectively. Now we must find

-> -
s and Ho’ H1 are the two-dimensional

S
where U denotes the vector

-
the auxiliary vector X' satisfying

- 12>
'« '™

*

Since: C,' can be written as

v lle, 0] {le 1]
L = |} : . s
o C“l , ﬁ 1-8
we have
-1
T S | i | I R
a=f -4 a 0 Cy | ’
and
a - -
- 1 1-8 a-l c,- 0 Hla) U + H,
X - " o-f a - >
. -8 @ o C 1| HB) U + B
-1 - - 4 - >
(1-p) C_"(H(a)U + H)) + (a=1) C;"(E(B)V + H,)
1 ' >
| PR PRt Lfram o w
-B¢C, (H(e)U + Ho) +a Cy (H(B)U + Hl)
A2 a2
Sinceco U =C;"U =U , ve have

- - - -t
(1-B)(H(@)U - X_) + (a=1)(K(8)V - X;)
- = - >
5 1] - (R - x,) + e(H(B)U - X;)

- -
1 1-8 a-1f| {[H(a)U - X,

] £ a H(p)?- _x: ’
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- -
where we have introduced the two-dimensional auxiliary vectors X, xl

corresponding to the channels C o? Cl, respectively, i.e., satisfying the
- - - -

equations X = -C_o Ho and Xl Hl Then, if X is the auxiliary vector

corresporiding to the channel C, i.e, satisfying the equation

?5 | %o e H(e)
x 11(B)

it follows from (29) that

X -
. - N X, 1 1-8 a=1 Io

(30) X X " ¥ 4 e - .
x, 5

-ty
Eq. (30) expresses the four-dimensional auxiliary vector X' of the expanded
- -
b x i channel C' in terms of the two-dimensional auxiliary vectors X, X
b~

'
and Xl of the binary chamnels C, C o and C Finally, the capacity of C in

10
bits/doublet is obtained from (30) by using Eq. (17). Thus, the calculation of
? and ¢(C') 1is a simple matter, provided one has available a table of the
values of the anxiliary vector -; corresponding to the gensral binary channel,
Such a table is given in Chang's paper E16] s to which the reader is referred

for further details,

The simple example Just given, where isolated doublets are transmitted,
illustrates the general approach to the problem of determining the capacity of
chamnels with memory of the type under consideration. More generally, one can
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consider the case of isolated groupg of n equall;v spaced digits, and then the
csse of a chamnel driven at a uniform raté with no pauses for recovery from
the effects of previously transmitted signals. (Cf course, the latter case
corresponds to passing to the limit n —»o00 in the case of transmitting
igolated groups of n equally spaced digits.) One can also consider m x m
channels with memory, where m > 2, Such problems have been studied by Chang
and co-workers [16], [17]. Finally, it is natural to study the case where
the noise itself has apprecisble memory or even the case where there is
statistical dependence between the noise and the signals. It appears that

much remains to be done along these lines.
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